Dynamic Tracking of Facial Expressions Using Adaptive, Overlapping Subspaces

نویسندگان

  • Dimitris N. Metaxas
  • Atul Kanaujia
  • Zhiguo Li
چکیده

We present a Dynamic Data Driven Application System (DDDAS) to track 2D shapes across large pose variations by learning non-linear shape manifold as overlapping, piecewise linear subspaces. The learned subspaces adaptively adjust to the subject by tracking the shapes independently using Kanade Lucas Tomasi(KLT) point tracker. The novelty of our approach is that the tracking of feature points is used to generate independent training examples for updating the learned shape manifold and the appearance model. We use landmark based shape analysis to train a Gaussian mixture model over the aligned shapes and learn a Point Distribution Model(PDM) for each of the mixture components. The target 2D shape is searched by first maximizing the mixture probability density for the local feature intensity profiles along the normal followed by constraining the global shape using the most probable PDM cluster. The feature shapes are robustly tracked across multiple frames by dynamically switching between the PDMs. The tracked 2D facial features are used deform the 3D face mask.The main advantage of the 3D deformable face models is the reduced dimensionality. The smaller number of degree of freedom makes the system more robust and enables capturing subtle facial expressions as change of only a few parameters. We demonstrate the results on tracking facial features and provide several empirical results to validate our approach. Our framework runs close to real time at 25 frames per second.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

Adaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields

Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...

متن کامل

Dynamically Adaptive Tracking of Gestures and Facial Expressions

We present a dynamic data-driven framework for tracking gestures and facial expressions from monocular sequences. Our system uses two cameras, one for the face and one for the body view for processing in different scales. Specifically, and for the gesture tracking module, we track the hands and the head, obtaining as output the blobs (ellipses) of the ROIs, and we detect the shoulder positions ...

متن کامل

Efficiently Estimating Facial Expression and Illumination in Appearance-based Tracking

We introduce a subspace representation of face appearance which separates facial expressions from illumination variations. The appearance of a face is represented by the addition of two approximately independent linear subspaces modelling facial expressions and illumination respectively. The independence assumption notably simplifies the training of the system. We only require two image sequenc...

متن کامل

Enhanced facial feature tracking of spontaneous and continuous expressions

The integration of multimedia technologies into mainstream computing have both raised the user’s expectations of computer interfaces, and made possible the development of multi-modal emotionally intelligent systems. The true strength of facial expression recognition (FER) shows when seamlessly integrated into emotionally intelligent systems enabling applications to add facial expressions to tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007